13 文字と式

<u>(1) 文字 xを使った式</u>

文字を使った式の表し方を調べていきましょう。

基本の確かめ

□ 正三角形の1辺の長さを□cmとして、まわりの長さを、□をつかった式で表しましょう。

 $\square \times 3$

 $x \times 3$

このような式では、	□のかわりに文字	x を使うことが	ぶあります。 x	を書いてみま	しょう。
 	$\boldsymbol{\mathcal{X}}$	\mathcal{X}			
正三角形の1辺の:	 長さをxcmとして	、まわりの長さ	 を、x を使っ	た式で表すと	

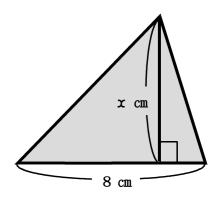
ステップ1

② 1辺の長さが、4cmのときの正方形のまわりの長さを求めましょう。 また、1辺の長さが、7cmのときの正方形のまわりの長さを求めましょう。

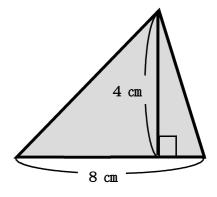
③ 100ページの本を30ページ読んだときの残りのページ数をxページとして、このことを式に表しましょう。

また、実際には何ページ残っていますか。

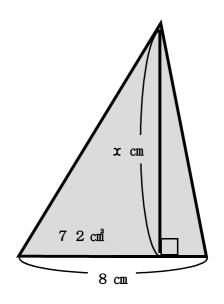
- 4 ゆうなさんは、同じねだんのクッキーを8つ買って、代金を960円はらいました。
 - ① クッキー1つのねだんを x 円として、8つの代金が960円であることを表す式を作りましょう。


x × 8 =

② x にあてはまる数を求めましょう。



③ ①の式に、②で求めた答えをあてはめて、答えの確かめをしましょう。


- 5 底辺が8cmの三角形があります。
 - ① この三角形の高さをxcmとして、三角形の面積をxを使った式に表しましょう。

- ② 高さが4㎝のときの面積を、
 - ①の式を使って求めましょう。

③ 高さがxcmで、面積が72cmで あることを式に表しましょう。

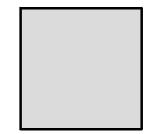
④ ③の式に、xにあてはまる数を求めます。高さxcmを、6 cm, 7 cm, ・・・と順に変えてあてはめ、面積が24 cm²になるときの高さを求めましょう。

高さが6cmのとき、

式は、 $6 \times 6 \div 2 = 18$ で面積は18 cm だ。

高さが7cmのとき、

式は、 $6 \times 7 \div 2 = 21$ で・・・。


- 6 x にあてはまる数を求めましょう。
 - ① 36 + x = 60

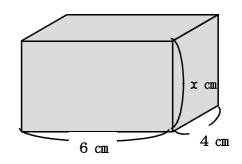
② x-24=55

 $3 \times 25 = 75$

 $4 \quad x \div 6 \ 4 = 1 \ 6$

- 7 まわりの長さが x cmの正方形があります。
 - ① この正方形の1辺の長さを、x を使った式で表しましょう。

- ② まわりの長さが16cmのときの 正方形の1辺の長さを求めましょう。

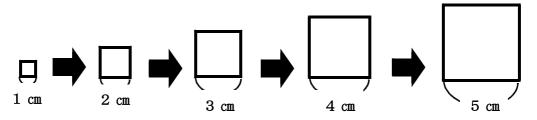


- 9 かほさんの全校児童は640人です。そのうち、男子は315人です。
 - ①女子の人数を x 人として、全校児童が640人であることを式で表しましょう。

② 女子の人数を求めましょう。

- 10 たて4cm、横6cmの直方体があります。
 - (1) 高さをxcmとして、直方体の体積をxを 使った式に表しましょう。

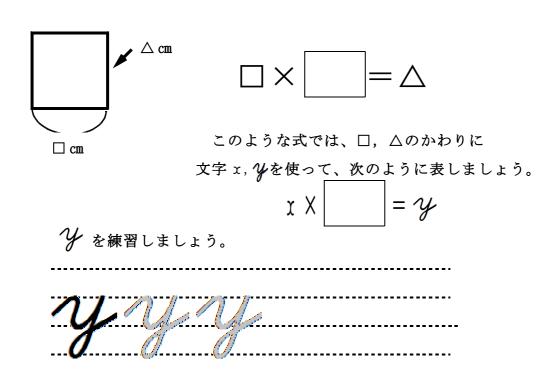
(2) 高さが5cmのときの直方体の体積を求めましょう。


(3) 直方体の240 cm のときの高さを求めます。 高さを順に変えてあてはめて求めましょう。

<u>(2) 2つの文字を使った式</u>

2つの文字を使った式での表し方を考えましょう。

基本の確かめ


1 正方形の1辺の長さを変えたとき、1辺の長さとまわりの長さの関係を調べましょう。

① 表をつくって調べましょう。

1辺の長さ(cm)	1	2	3	4	5	6	
まわりの長さ (cm)							

② 1辺を□cm、まわりの長さを△cmとして、1辺の長さとまわりの長さの関係を式に表します。

③ 1辺の長さx cm ε 1 cm t つ増やすと、 まわりの長さy cm はどのように変化しますか。

④ 1辺の長さx cmを2倍、3倍、 \cdots でにすると、まわりの長さy cmはどのように変化しますか。

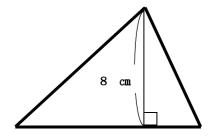
ス	テ	ツ	プ	1

2	プ1 円の直径を x cm、円周を y cmとした円を考えましょう。 円の直径と円周の関係を式に表しましょう。	x cm
2	円の直径の長さが 5 cm のときの円周の長さを求めましょう。	ycm
3	円周の長さが31.4㎝のとき、直径の長さを求めましょう。	

③ 1 mで24gのはり金があります。このはり金x mの重さを yg とするときの、 はり金の長さと重さの関係を式に表しましょう。

ステップ2

4 1個 x 円のチョコレートを12	は個買って、100	0円札でしはらいました。
--------------------	-----------	--------------


① おつり γ 円は、どんな式で表せますか。

② xが30や65のとき、yはそれぞれどんな数になるでしょう。

ェが30のとき

x が 6 5 のとき

- 5 高さが8cmの三角形を考えましょう。
- ① 底辺がx cmのときの面積をy cmとして、x とy の関係を式に表しましょう。

y =		
-----	--	--

② 底辺が6㎝、12㎝のときの面積を求めましょう。

6 cm

1 2 cm

③ 底辺が1㎝長くなると、三角形の面積はどのように変わりますか。

6 時速 xkm で走る車が、1時間30分走るとykm 進みます。 この車の速さと進む道のりを x とy の関係を式に表しましょう。

解答 13 文字と式

<u>(1) 文字 αを使った式</u>

文字を使った式の表し方を調べていきましょう。

基本の確かめ

□ 正三角形の1辺の長さを□cmとして、まわりの長さを、□をつかった式で表しましょう。

 $\square \times 3$

このような式では、□のかわりに文字 x を使うことがあります。x を書いてみましょう。

正三角形の1辺の長さを x cmとして、まわりの長さを、x を使った式で表すと

 $x \times 3$

ステップ1

② 1辺の長さが、4cmのときの正方形のまわりの長さを求めましょう。 また、1辺の長さが、7cmのときの正方形のまわりの長さを求めましょう。

$$4 \times 4 = 16$$
 1 6 cm

$$7 \times 4 = 2 \ 8$$
 2 8 cm

③ 100ページの本を30ページ読んだときの残りのページ数を x ページとして、 このことを式に表しましょう。

また、実際には何ページ残っていますか。

$$1 \ 0 \ 0 - x = 3 \ 0$$
 (3 0 + x = 1 0 0, 1 0 0 - 3 0 = x)
 $x = 1 \ 0 \ 0 - 3 \ 0$
= 7 0

<u>70ページ残っている</u>

- 4 ゆうなさんは、同じねだんのクッキーを8つ買って、代金を960円はらいました。
 - ① クッキー1つのねだんを x 円として、8つの代金が960円であることを表す 式を作りましょう。

$$x \times 8 = \boxed{960}$$

② x にあてはまる数を求めましょう。

$$x \times 8 = \boxed{960}$$

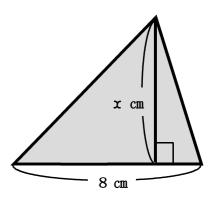
$$x = \boxed{960} \div \boxed{8}$$

$$= \boxed{120}$$

$$\cancel{\cancel{\$}} \boxed{120}$$

③ ①の式に、②で求めた答えをあてはめて、答えの確かめをしましょう。

$$x = \boxed{120}$$

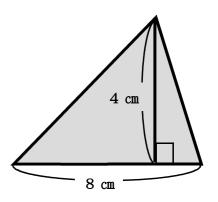

$$\downarrow$$

$$x \times 8 = \boxed{120} \times 8$$

$$= \boxed{960}$$

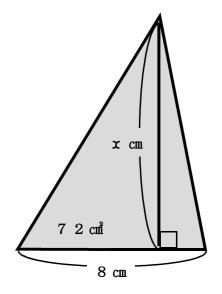
- 5 底辺が8cmの三角形があります。
 - ① この三角形の高さをx cm として、 三角形の面積をx を使った式に表し ましょう。

$$8 \times x \times \frac{1}{2}$$



- ② 高さが4cmのときの面積を、
 - ①の式を使って求めましょう。

$$8 \times 4 \times \frac{1}{2} = 2 \ 0$$


$$2 \ 0 \ \text{cm}^2$$

$$-6 - |3 - |0 -$$

③ 高さがxcmで、面積が72cmで あることを式に表しましょう。

$$7 \ 2 = 8 \times x \times \frac{1}{2}$$

④ ③の式に、xにあてはまる数を求めます。 高さxcmを、6cm, 7cm, ・・・と順に変えて あてはめ、面積が32cmになるときの高さを 求めましょう。

高さが6cmのとき、

式は、 $6 \times 6 \div 2 = 18$ で面積は18 cm だ。 高さが7 cm のとき、

式は、 $6 \times 7 \div 2 = 21$ で・・・。

$$x = 6$$
 のとき $8 \times 6 \times \frac{1}{2} = 24$

$$x = 7 の と き$$
 $8 \times 7 \times \frac{1}{2} = 2 8$

$$x = 8$$
のとき $8 \times 8 \times \frac{1}{2} = 3$ 2

高さ8cm

6 x にあてはまる数を求めましょう。

①
$$36 + x = 60$$

 $x = 60 - 36$
 $= 24$

③
$$x \times 25 = 75$$

 $x = 75 \div 25$
 $= 3$

②
$$x-2 = 5 = 5$$

 $x = 5 = 5 + 2 = 4$
 $= 7 = 9$

①
$$x \div 6 \ 4 = 1 \ 6$$

 $x = 1 \ 6 \times 6 \ 4$
 $= 1 \ 0 \ 2 \ 4$

- 7 まわりの長さが x cmの正方形があります。
 - ① この正方形の1辺の長さを、x を使った式で表しましょう。

$x \div 4$

② まわりの長さが16cmのときの 正方形の1辺の長さを求めましょう。

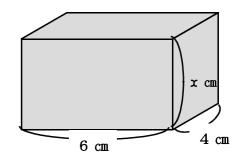
$$1 6 \div 4 = 4 \qquad \underline{4 \text{ cm}}$$

[8] x kgの荷物をのせたトラックの重さが1500 kgのとき、トラックだけの重さを x kgを使った式で表しましょう。

1500-x

- 9 かほさんの全校児童は640人です。そのうち、男子は315人です。
 - ①女子の人数を x 人として、全校児童が640人であることを式で表しましょう。

$$315 + x = 640$$


② 女子の人数を求めましょう。

$$3 1 5 + x = 6 4 0$$
 $x = 6 4 0 - 3 1 5$
 $= 3 2 5$

325人

- 10 たて4cm、横6cmの直方体があります。
 - (1) 高さをxcmとして、直方体の体積をxを 使った式に表しましょう。

$$4 \times 6 \times x$$

(2) 高さが5cmのときの直方体の体積を求めましょう。

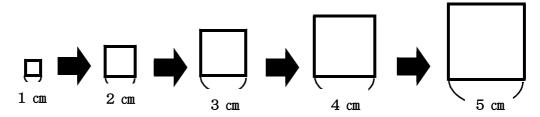
$$4 \times 6 \times 5 = 1 \ 2 \ 0$$

$120\,\mathrm{m}^3$

(3) 直方体の240cmのときの高さを求めます。 高さを順に変えてあてはめて求めましょう。

$$4 \times 6 \times x = 240$$

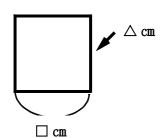
x	6	7	8	9	1 0
体積	1 4 4	1 6 8	1 9 2	2 1 6	2 4 0


高さ 10 cm

<u>(2)2つの文字を使った式</u>

2つの文字を使った式での表し方を考えましょう。

基本の確かめ


1 正方形の1辺の長さを変えたとき、1辺の長さとまわりの長さの関係を調べましょう。

① 表をつくって調べましょう。

1辺の長さ (cm)	1	2	3	4	5	6	
まわりの長さ (cm)	4	8	1 2	1 6	2 0	2 4	

② 1辺を□cm、まわりの長さを△cmとして、1辺の長さとまわりの長さの関係を式に表します。

このような式では、 \square , \triangle のかわりに 文字 x, yを使って、次のように表しましょう。

$$\chi X = y$$

y を練習しましょう。

*Y*M

③ 1辺の長さx cm ε 1 cm ずつ増やすと、 まわりの長さy cm はどのように変化しますか。

4 cmずつ増える。

2倍, 3倍, ・・・になる。

- ② 円の直径をxcm、円周をycmとした円を考えましょう。
- ① 円の直径と円周の関係を式に表しましょう。

② 円の直径の長さが5㎝のときの円周の長さを求めましょう。

15.7cm

③ 円周の長さが31.4㎝のとき、直径の長さを求めましょう。

1 O cm

③ 1 mで24gのはり金があります。このはり金x mの重さを ygとするときの、はり金の長さと重さの関係を式に表しましょう。

$$\mathcal{Y} = 24 \times 1$$

ステップ2

- 4 1個x円のチョコレートを12個買って、1000円札でしはらいました。
- ① おつり γ 円は、どんな式で表せますか。

$$\mathcal{Y} = 1000 - x \times 12$$

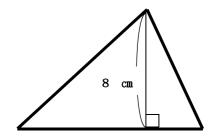
② xが30や65のとき、yはそれぞれどんな数になるでしょう。

$$Y = 1 \ 0 \ 0 \ 0 - 3 \ 0 \times x$$

= 6 4 0

x が 3 0 のとき

640円


$$\mathcal{Y} = 1 \ 0 \ 0 \ 0 - 6 \ 5 \times x$$

$$= 2 \ 2 \ 0$$

xが65のとき

220円

- 5 高さが8cmの三角形を考えましょう。
- ① 底辺がx cmのときの面積をy cmとして、x とy の関係を式に表しましょう。

$$y = x \times 8 \times \frac{1}{2}$$

② 底辺が6 cm、1 2 cmのときの面積を求めましょう。

$$\mathcal{Y} = 6 \times 8 \times \frac{1}{2}$$
$$= 2.4$$

2 4 cm

$$\mathcal{Y} = 1 \ 2 \times 8 \times \frac{1}{2}$$
$$= 4 \ 8$$

4 8 cm

③ 底辺が1㎝長くなると、三角形の面積はどのように変わりますか。

4cm 面積が増える。

6 時速 x km で走る車が、1時間30分走るとy km 進みます。 この車の速さと進む道のりをxとyの関係を式に表しましょう。

1時間
$$30$$
分 $=1.5$ 時間
(道の 9) $=$ (速さ) \times (時間)
だから、 $y=x\times1.5$

$$\mathcal{Y} = x \times 1.$$
 5