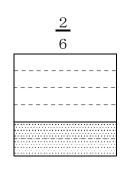

9 分数のたし算とひき算


(1) 大きさの等しい分数


基本の確かめ

分数の分母どうし 分子どうしの関係を図や式に表してみよう。

 $\frac{1}{3}$ と $\frac{2}{6}$ と $\frac{3}{9}$ は、同じ大きさの分数でしょうか。分母どうし、分子どうしにはどんな関係があるでしょう。

$$\frac{1}{3} = \frac{1 \times 2}{3 \times 2} = \frac{2}{6}$$

② $\frac{1}{3}$ は、 $\frac{3}{9}$ の分母と分子をそれぞれ でわった分数です。

$$\frac{3}{9} = \frac{3 \div 3}{9 \div 3} = \frac{1}{3}$$

①分母12と分子8の公約数は なので、公約数で分母と分子をわると、等しい分数ができる。

②公約数の中でも、もっとも大きい数 で分母と分子をわると となる。このように、一番簡単な分数にすることを**約分**するといいます。

3

2つのビンにジュースが残っています。 \mathbf{A} には $\frac{2}{3}$ L、 \mathbf{B} には $\frac{3}{5}$ Lです。 どちらが多く残っているでしょう。

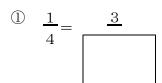
①大きさを変えないで、分母が同じ分数になおせば、比べることができます。

②分母が3と5なので、分母

× で にします。

 $\mathbf{B} \, \mathsf{i} \mathsf{t} \qquad \frac{3}{5} = \frac{3 \times 3}{5 \times 3} =$

となります。

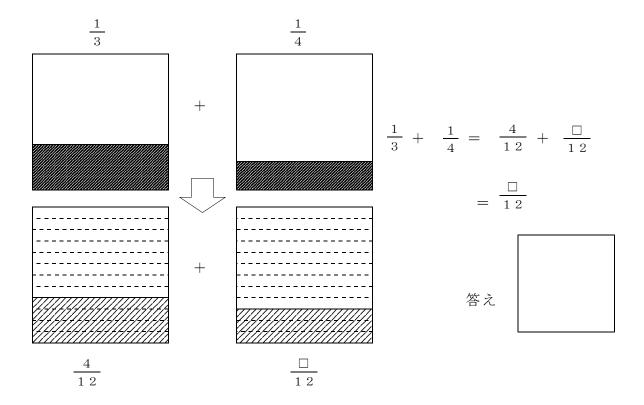

- ④それらを比べると がたくさん残っていたことになります。
- ⑤このように、大きさを変えないで、分母の違う分数にすることを**通分**するといいます。
- ⑥通分するときには、ふつうそれぞれの分母の を分母にします。

ステップ1

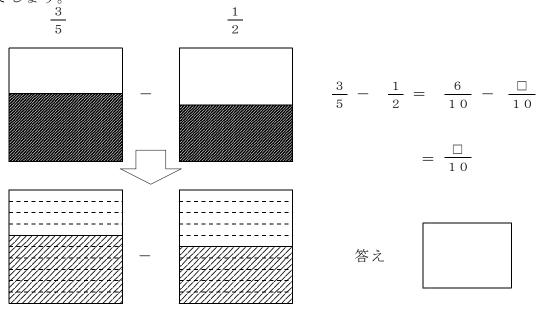
- 4 次の分数と大きさの等しい分数を3つつくりましょう。
 - ① 2

② <u>3</u> 5

5 □にあてはまる数をかきましょう。



(<u>2) 分数のたし算とひき算</u>


基本の確かめ

分母を同じ数に直して考えよう。

 $\boxed{6}$ 2つの入れ物に牛乳 $\frac{1}{3}$ L と $\frac{1}{4}$ L入っています。合わせて何Lあるでしょう。

 $\boxed{7}$ ジュースが $\frac{3}{5}$ Lあります。のどがかわいたので、 $\frac{1}{2}$ L飲みました。残りは何Lでしょう。 $\frac{1}{3}$

 $\boxed{8} \quad \frac{1}{4} + \quad \frac{3}{20} \quad$ の計算のしかたを考えよう。

$$\frac{1}{4} + \frac{3}{20} = \frac{\square}{20} + \frac{3}{20}$$

$$= \frac{\square}{20}$$

$$= \frac{2}{5}$$
分母と分子を
4 でわる。

. . .

. .

分母の大きさのちがう分数のたし算・ひき算は、通分してから計算する。

ステップ 1

9 次の計算をしましょう。

①
$$\frac{2}{3} + \frac{1}{6}$$

$$2 \frac{1}{2} + \frac{1}{4}$$

$$3 \frac{3}{4} + \frac{1}{8}$$

$$4 \frac{5}{8} - \frac{1}{4}$$

$$\boxed{5} \quad \frac{7}{9} - \frac{1}{3}$$

ステップ 2

10 次の計算をしましょう。

①
$$\frac{3}{5} + \frac{1}{3}$$

$$2 \frac{1}{6} + \frac{7}{9}$$

- $3 \frac{7}{12} + \frac{3}{8}$

- $\bigcirc \frac{1}{2} + \frac{3}{7}$
- $\frac{6}{6} + \frac{3}{4}$

- $\frac{4}{5} + \frac{3}{4}$

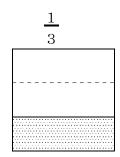
- ① $\frac{7}{8} \frac{7}{12}$

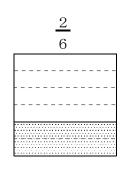
- $\frac{13}{8} \frac{5}{6}$

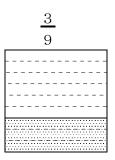
- $\frac{1}{9} \frac{1}{6}$

- $\fbox{1\ 1}$ 赤、青、白のテープがあります。赤いテープは $\dfrac{2}{3}$ m あります。青いテープは 赤いテープより $\frac{1}{2}$ m 長いそうです。また白いテープは青いテープより $\frac{3}{4}$ m 短い そうです。
 - 1

①青いテープ、白	いテープはそれぞれ何mあるでしょう。		
青いテープ			
式			
		答え	
白いテープ			
式			
		答え	
②この3本のテー	·プをつないで1本にすると何mになるで	しょう。	
式			
		答え	


9 分数のたし算とひき算 答えのページ


(1) 大きさの等しい分数


基本の確かめ

分数の分母どうし 分子どうしの関係を図や式に表してみよう。

 $\frac{1}{3}$ と $\frac{2}{6}$ と $\frac{3}{9}$ は、同じ大きさの分数でしょうか。分母どうし、分子どうしにはどんな関係があるでしょう。

① $\frac{2}{6}$ は、 $\frac{1}{3}$ の分母と分子をそれぞれ $\boxed{2}$ 倍した分数です。

$$\frac{1}{3} = \frac{1 \times 2}{3 \times 2} = \frac{2}{6}$$

② $\frac{1}{3}$ は、 $\frac{3}{9}$ の分母と分子をそれぞれ $\boxed{3}$ でわった分数です。

$$\frac{3}{9} = \frac{3 \div 3}{9 \div 3} = \frac{1}{3}$$

2 $\frac{8}{12}$ と大きさが等しくて、分母と分子が一番小さい分数をつくりましょう。

①分母12と分子8の公約数は2,4なので、公約数で分母と分子をわると、等しい分数ができる。

②公約数の中でも、もっとも大きい数 4 で分母と分子をわると $\frac{2}{3}$ となる。このように、一番簡単な分数にすることを**約分**するといいます。

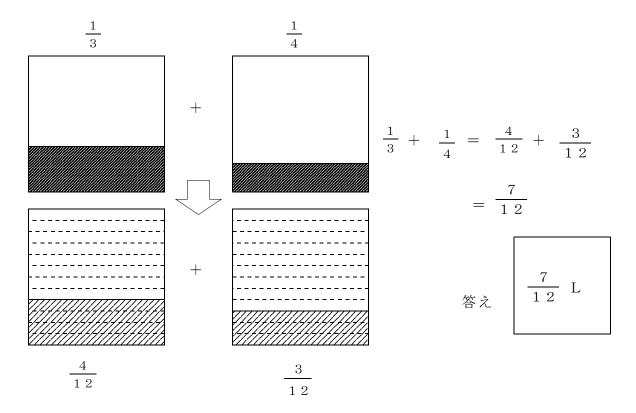
- ② 2つのビンにジュースが残っています。 \mathbf{A} には $\frac{2}{3}$ L、 \mathbf{B} には $\frac{3}{5}$ Lです。 どちらが多く残っているでしょう。
 - ①大きさを変えないで、分母が同じ分数になおせば、比べることができます。
 - ②分母が3と5なので、分母 3 × 5 で 15 にします。
 - - $\mathbf{B} \text{ it } \frac{3}{5} = \frac{3 \times 3}{5 \times 3} = \boxed{\frac{9}{1 \ 5}}$

となります。

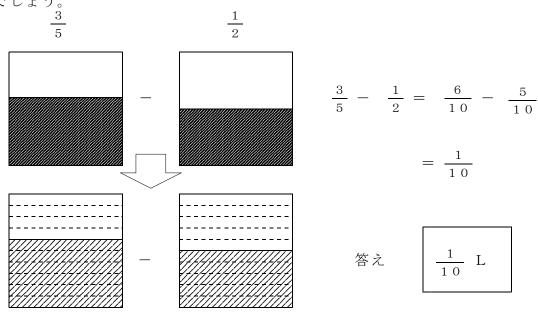
- ④それらを比べるとA がたくさん残っていたことになります。
- ⑤このように、大きさを変えないで、分母の違う分数にすることを**通分**するといいます。
- ⑥通分するときには、ふつうそれぞれの分母の 最小公倍数 を分母にします。

ステップ1

- 4 次の分数と大きさの等しい分数を3つつくりましょう。
 - ① <u>2</u> 3


- ② <u>3</u> 5
- $(\emptyset) \frac{4}{6}, \frac{6}{9}, \frac{8}{12}$
- (\emptyset) $\frac{6}{10}$, $\frac{9}{15}$, $\frac{12}{20}$
- 5 □にあてはまる数をかきましょう。

(<u>2) 分数のたし算とひき算</u>


基本の確かめ

分母を同じ数に直して考えよう。

 $\boxed{6}$ 2つの入れ物に牛乳 $\frac{1}{3}$ L と $\frac{1}{4}$ L入っています。合わせて何Lあるでしょう。

 $\boxed{7}$ ジュースが $\frac{3}{5}$ Lあります。のどがかわいたので、 $\frac{1}{2}$ L飲みました。残りは何上でしょう。 $\frac{3}{5}$ $\frac{1}{2}$

 $\boxed{8} \quad \frac{1}{4} + \quad \frac{3}{20} \quad$ の計算のしかたを考えよう。

$$\frac{1}{4} + \frac{3}{20} = \frac{5}{20} + \frac{3}{20}$$

$$= \frac{8}{20}$$

$$= \frac{2}{5}$$
分母と分子を
4 でわる。

通分

・・ 約分

分母の大きさのちがう分数のたし算・ひき算は、通分してから計算する。

ステップ1

9 次の計算をしましょう。

$$\frac{3}{4}$$

$$3 \frac{3}{4} + \frac{1}{8}$$

$$\frac{6}{8} + \frac{1}{8} = \frac{7}{8}$$

$$\underbrace{\frac{5}{8} - \frac{1}{4}}_{\frac{5}{8} - \frac{2}{8} = \frac{3}{8}$$

$$\frac{7}{1 \ 5}$$

ステップ 2

10 次の計算をしましょう。

$$\begin{array}{r}
4 \\
\hline
15 \\
4 \\
\hline
15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\
-15 \\$$

$$\begin{array}{ccc} & \frac{1}{2} + \frac{3}{7} \\ & \frac{7}{14} + \frac{6}{14} = \frac{13}{14} \end{array}$$

$$\begin{array}{c|c}
1 & 3 \\
\hline
1 & 4
\end{array}$$

$$\begin{array}{c|c}
1 & 9 \\
\hline
1 & 2
\end{array}$$

$$\begin{array}{c|c} 4 & 3 \\ \hline 3 & 0 \end{array}$$

$$\begin{array}{c|cccc}
\hline{(1)} & \underline{17} & -\underline{7} \\
\hline{15} & \underline{10} \\
\underline{34} & \underline{9} \\
\underline{30} & \underline{30} \\
\underline{-25} & \underline{56} \\
\end{array}$$

$$\begin{array}{ccc}
\textcircled{1} & \frac{7}{8} - \frac{7}{12} \\
& \frac{21}{24} - \frac{14}{24} = \frac{7}{24}
\end{array}$$

$$\frac{7}{2}$$

$$\begin{array}{c|c}
\hline
(3) & \frac{7}{8} - \frac{5}{6} \\
 & \frac{21}{24} - \frac{20}{24} = \frac{1}{24}
\end{array}$$

$$\frac{3}{1 \quad 0}$$

- <u>1</u>1 赤、青、白のテープがあります。赤いテープは $\frac{2}{3}$ m あります。青いテープは赤いテープより $\frac{1}{2}$ m 長いそうです。また白いテープは青いテープより $\frac{3}{4}$ m 短いそうです。
 - ①青いテープ、白いテープはそれぞれ何mあるでしょう。

青いテープ

式
$$\frac{2}{3} + \frac{1}{2}$$
 答え
$$\frac{4}{6} + \frac{3}{6} = \frac{7}{6}$$

白いテープ

式
$$\frac{7}{6} - \frac{3}{4}$$
 答え $\frac{5}{12}$ m $\frac{14}{12} - \frac{9}{12} = \frac{5}{12}$

②この3本のテープをつないで1本にすると何mになるでしょう。

式
$$\frac{2}{3} + \frac{7}{6} + \frac{5}{12}$$
 答之
$$\frac{8}{12} + \frac{14}{12} + \frac{5}{12} = \frac{27}{12} = \frac{9}{4}$$